If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+25t-300=0
a = 1; b = 25; c = -300;
Δ = b2-4ac
Δ = 252-4·1·(-300)
Δ = 1825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1825}=\sqrt{25*73}=\sqrt{25}*\sqrt{73}=5\sqrt{73}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-5\sqrt{73}}{2*1}=\frac{-25-5\sqrt{73}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+5\sqrt{73}}{2*1}=\frac{-25+5\sqrt{73}}{2} $
| 13x+18=4x+36 | | 8x+11=3x+16 | | -39(-6/13)-39=x | | 49=-7/4u | | -15/8=-3x | | x+.03x=224 | | 7x^2+14x-560=0 | | 3X-2-11X-2=3x-8x+2 | | 4/5=x÷-5/2 | | -3(u+4)+5u=0 | | (180-(7-12x))+(-8x+3)+(-5x)=180 | | 10x+1=5x+11 | | 20=-16-6y | | 5x-23=55 | | 2n+5=68 | | 3(y-6)=25 | | 20-5w=5 | | 6x^2-24x+8=0 | | 0.3+y=1.7 | | 7/3u=-14 | | 5x+11=2x+29 | | 4(x-2)-7x=0 | | x-2.99=84.1 | | 9=-3/5y | | 1.9+v=2.9 | | -14/9=-7y | | -2(w+3)+3w=0 | | -40+x=-95 | | (n÷n-2)+(1÷n²-4)=(3n-1)÷(3n+6) | | 8x/6+32/6=x+5 | | -5+x=29 | | -6/7=9/7t |